Pages

Friday, December 27, 2013

Build a 10 Amp 13 8 Volt Power Supply Circuit Diagram

Sometimes amateurs like to home-brew their power supplies instead of purchasing one off the shelf at any of the major ham radio retail dealers. The advantage to rolling your own power supply is that it teaches us how they work and makes it easier to troubleshoot and repair other power supply units in the shack. It should be noted that there is no real cost advantage to building your own power supply unless you can get a large power transformer and heat sink for a super low price. 

Of course rolling our own gives us the ability to customize the circuit and make it even more reliable than commercial units. The circuit in Figure 1 will give us 10 amps (12 amps surge) with performance that equals or exceeds any commercial unit. The circuit even has a current limiting feature which is a more reliable system than most commercial units have. Just like other commercial units, this circuit uses the LM723 IC which gives us excellent voltage regulation. The circuit uses 3 pass transistors which must be heat sinked. Resistor R9 allows the fine tuning of the voltage to exactly 13.8 volts and the resistor network formed by resistors R4 through R7 controls the current limiting. 

The LM723 limits the current when the voltage drop across R5 approaches .7 volts. To reduce costs, most commercial units rely on the HFE of the pass transistors to determine the current limiting. The fault in that system is that the HFE of the pass transistors actually increases when the transistors heat up and risks a thermal runaway condition causing a possible failure of the pass transistors. Because this circuit samples the collector current of the pass transistors, thermal runaway is not a problem in this circuit making it a much more reliable power supply. 

The only adjustment required is setting R9 to the desired output voltage of anywhere between 10 and 14 volts. You may use a front panel mounted 1K potentiometer for this purpose if desired. Resistor R1 only enhances temperature stability and can be eliminated if desired by connecting pins 5 and 6 of IC-1 together. Although it really isn’t needed due to the type of current limiting circuit used, over voltage protection can be added to the circuit by connecting the circuit of Figure 2 to Vout. The only way over voltage could occur is if transistors Q2 or Q3 were to fail with a collector to emitter short. Although collector to emitter shorts do happen, it is more much more likely that the transistors will open up when they fail.

 10 Amp 13.8 Volt Power Supply Circuit Diagram

10 Amp 13.8 Volt Power Supply Circuit Diagram




I actually tested this and purposely destroyed several 2N3055’s by shorting the emitters to ground. In all cases the transistors opened up and no collector to emitter short occurred in any transistor. In any event, the optional circuit in Figure 2 will give you that extra peace of mind when a very expensive radio is used with the power supply. The circuit in Figure 2 senses when the voltage exceeds 15 volts and causes the zener diode to conduct. When the zener diode conducts, the gate of the SCR is turned on and causes the SCR to short which blows the 15 amp fuse and shuts off the output voltage. 

A 2N6399 (Tech America) was used for the SCR in the prototype but any suitable SCR can be used. While over voltage protection is a good idea, it should not be considered a substitute for large heat sinks. I personally feel the best protection from over voltage is the use of large heat sinks and a reliable current limiting circuit. Be sure to use large heat sinks along with heat sink grease for the 2N3055 transistors. I have used this power supply in my shack for several months on all kinds of transceivers from HF, VHF to UHF with excellent results and absolutely no hum. This power supply will be a welcome addition to your shack and will greatly enhance your knowledge of power supplies.

10 Amp 13.8 Volt Power Supply Circuit Diagram2


Parts
R1 1.5K ¼ Watt Resistor (optional, tie pins 6 & 5 of IC1 together if not used.)
R2,R3 0.1 Ohm 10 Watt Resistor (Tech America 900-1002)
R4 270 Ohm ¼ Watt Resistor
R5 680 Ohm ¼ Watt Resistor
R6,R7 0.15 Ohm 10 Watt Resistor (Tech America 900-1006)
R8 2.7K ¼ Watt Resistor
R9 1K Trimmer Potentiometer (RS271-280)
R10 3.3K ¼ Watt Resistor
C1,C2,C3,C4 4700 Microfarad Electrolytic Capacitor 35 Volt (observe polarity)
C5 100 Picofarad Ceramic Disk Capacitor
C6 1000 Microfarad Electrolytic Capacitor 25 Volt (observe polarity)
IC1 LM723 (RS276-1740) Voltage Regulator IC. Socket is recommended.
Q1 TIP3055T (RS276-2020) NPN Transistor (TO-220 Heat Sink Required)
Q2,Q3 2N3055 (RS276-2041) NPN Transistor (Large TO-3 Heat Sink Required)
S1 Any SPST Toggle Switch
F1 3 Amp Fast Blow Fuse
D1-D4 Full Wave Bridge Rectifier (RS276-1185)
T1 18 Volt, 10 Amp Transformer Hammond #165S18 (Tech America 900-5825)
Read More..

Thursday, December 26, 2013

Part 2 High Voltage Supply Circuit Diagram

This High-Voltage Supply Circuit Diagram uses a transistor oscillator and a voltage multiplier to charge CIO and CI 1 to a high voltage. When the spark gap breaks down, T2 produces a high-voltage pulse via the capacitance discharge of CIO and Cll into its primary. T2 is an auto ignition coil.

Read : High-Voltage Pulse Supply Circuit Diagram


High-Voltage Supply Circuit Diagram

High-Voltage Supply Circuit Diagram

Read More..

Wednesday, December 25, 2013

Simple Dc Ac Inverter Circuit Diagram

This dc-to-ac inverter is based on the popular 555. A 555 oscillator circuit drives a buffer amplifier consisting of Ql, Q2, and Q3. 

The circuit operates at 150 to 160 Hz. Tl can be a 6.3-V or 12.6-V filament transformer as applicable.The frequency can be changed by changing the values of Rl and/or Cl.


Simple Dc/Ac Inverter Circuit Diagram

Simple Dc/Ac Inverter Circuit Diagram

Read More..

Tuesday, December 24, 2013

Current Monitor And Alarm

These circuits are intended for remote monitoring of the current consumption on the domestic mains line.

Fig 1 Current Monitor And Alarm-Circuit Daigram
The circuit in Fig. I lights the signal lamp upon detecting a mains current consumption of more than 5 mA, and handles currents of several amperes with appropriate diodes fitted in the D, and D2 positions. Transistor Ti is switched on when the drop  across D,-D2 exceeds a certain level. Diodes from  the well-known I N400x series can be used for currents of up to I A, while lN540x types are rated for up to 3 A. Fuse F, should, of course, be dimensioned to suit the particular application.

A number of possible transistor types have been stated for use in the Ti position. Should you consider using a type not listed, be sure that it can cope with surges up to 700 V. As long as Ti does not con- duct, the gate of the triac is at mains potential via  C,, protective resistor R2 and diode Da, which  keeps C, charged. When Ti conducts, alternating current can flow through the capacitor, and the triac is triggered, so that Lai lights.
Fig 2 Current Monitor And Alarm-Circuit Diagram
The circuit in Fig. 2 is a current triggered alarm. Rectifier bridge D4-D7 can only provide the coil voltage for Re, when the current through Di-D2 exceeds a certain level, because then series capacitor C, passes the alternating mains current. Capacitor C, may need to be dimensioned otherwise than shown to suit the sensitivity of the relay coil. This is readily effected by connecting capacitors in parallel until the coil voltage is high enough for the relay to operate reliably.

Finally, an important point: Many points in these circuits are at mains potential and therefore extremely dangerous to touch.

Source :http://www.ecircuitslab.com/2012/08/current-monitor-and-alarm-circuit.html
Read More..

Monday, December 23, 2013

Simple RF Transmitter for PIR Sensors Circuit Diagram

This is the Simple  RF Transmitter for PIR Sensors Circuit Diagram.


Simple  RF Transmitter for PIR Sensors Circuit Diagram

Read More..

Sunday, December 22, 2013

Simple 2304 and 3456 MHz Power Amplifiers Circuit Diagram

This is a Simple 2304 and 3456 MHz Power Amplifiers Circuit Diagram

Circuit-Diagram

Read More..

Saturday, December 21, 2013

Portable CD Player Adapter For Car

Whenever Im in the car listening to my favourite CD, it always happens; my batteries go dead. To solve that problem, I built this extremely simple regulator circuit. It steps down the 12V from the lighter socket to 9V which is used by the CD player. Different CD players (I have a Sony DiscMan) may require different voltages, so just use the correct regulator. All the 78xx series regulators have the same pin out, so the circuit is universal.


Part           Total Qty.                     Description

C1                      1                        1000uF 25V Electrolytic Capacitor   
C2                      1                        10uF 25V Electrolytic Capacitor   
C3                      1                        1uF 15V Elextrolytic Capacitor   
C4                      1                        0.1uF 15V Electrolytic Capacitor   
U1                      1                        7809 Or Other Regulator (See "Notes")    See Notes
MISC                  1                        Cigarette Lighter Plug, Plug For CD Player (See "Notes"),      Heat Sink For U1, Wire, Case.   
   
Notes
  • The voltage your CD player needs will determine which regulator you use. For 9V, use the 7809. For 6V, use the 7806. For the unlikely 5V use the 7805. Remember that whatever regulator you use, you will need to heat sink it. The metal case or metal cover on the case makes a great heat sink.
  • I built the circuit in a small case with the long wire to the cigarette lighter plug coming out one end, then another, slightly shorter wire going out the other end to the CD player.
  • Triple check your wiring. You would hate to ruin an expensive CD player because you reversed one of the connections or hooked the regulator up backwards.
Read More..

Friday, December 20, 2013

Pills Reminder

4 - 6 - 8 - 12 - 24 - 48 hours setting, LED or Beep Alert - 9V Battery Supply

A Pills Reminder is a device that operates a flashing LED (and/or a beeper) at a fixed hour interval. A choice of time-intervals as wide as possible is available with this circuit, namely 4, 6, 8, 12, 24 and 48 hours. At first you must choose the hour interval by switching SW1 to the desired value, then apply power by means of SW2. After the hour delay chosen has elapsed the LED will start flashing at 2Hz, i.e. two times per second.

This status will last until pushbutton P1 is pressed: then the LED will turn off, but the circuit will continue its counting and the LED will flash again when the same hour interval as before is reached. A noteworthy feature of this circuit, usually not found in similar devices, is that the internal counter is not reset when P1 is pressed: this allows a better time-interval precision.

Let us explain this feature with an example: suppose you have set the time interval to 24 hours and started the Pills Reminder at 8 oclock. Next day, at 8 oclock the LED will start flashing, but you, for some reason, notice the flashes at 8:10 and press P1 to stop the LED. With most devices of this kind, the counter will be reset, causing the LED to start flashing next day at 8:10 oclock. This will not happen with this circuit and the LED will start flashing next day always precisely at 8 oclock even if you pressed P1 at 9 or 10 oclock.

Circuit diagram:Pills Reminder Circuit Diagram
Pills Reminder Circuit Diagram
Parts:

R1______________10M 1/4W Resistor
R2,R3,R4_______100K 1/4W Resistors
R5,R7___________10K 1/4W Resistors
R6_______________1K 1/4W Resistor
C1,C2___________22pF 63V Ceramic Capacitors (See Notes)
C3______________22µF 25V Electrolytic Capacitor
C4,C5__________100nF 63V Polyester Capacitors
C6_______________1µF 63V Polyester, Multilayer Ceramic or Electrolytic Capacitor
IC1____________4060 14 stage ripple counter and oscillator CMos IC
IC2____________4040 12 stage ripple counter CMos IC
IC3____________4082 Dual 4 input AND gate CMos IC
IC4____________4075 Triple 3 input OR gate CMos IC
IC5____________4520 Dual binary up-counter CMos IC
IC6____________4001 Quad 2 input NOR Gate CMos IC
D1_____________5 or 10mm red LED
XTAL_________32.768 kHz Sub-miniature Watch crystal
P1_____________SPST Pushbutton
SW1____________2 poles 6 ways Rotary Switch
SW2____________SPST Toggle or Slide Switch
B1_______________9V PP3 Battery Clip for PP3 Battery

Alternative Clock Parts:

R8_______________1K 1/4W Resistor
R9_____________330K 1/4W Resistor
R10_____________20K 1/2W Cermet or Carbon Trimmer
R11______________1K 1/2W Cermet or Carbon Trimmer
C7_______________1µF 63V Polyester Capacitor
IC7____________7555 or TS555CN CMos Timer IC

Circuit Operation:

The clock of the circuit is made of a stable oscillator built around two inverters embedded into IC1 and a Watch crystal oscillating at 32.768kHz. This frequency is divided by 16384 by the internal flip-flop chain of IC1 and a 2Hz very stable clock frequency is available at pin #3 of this IC. IC2 counter and IC3A 4 input AND gate are wired in order to divide by 3600 the 2Hz clock, therefore, a pulse every 30 minutes is available at the clock input of IC5. The division factor of this IC is controlled by IC3B and the position of SW1A and B, selecting from six time-intervals fixed to 4, 6, 8, 12, 24 and 48 hours.

The set-reset flip-flop formed by IC6B and IC6C is set through IC4C each time a low to high transition is present at the pin of IC5 selected by SW1B cursor. IC6A and C4 provide to set the flip-flop also when a high to low transition is present at SW1B cursor. When the flip-flop is set, IC6D is enabled and the 2Hz frequency available at pin #3 of IC1 is applied to pin #13 of IC6D causing the flashing LED operation. The flip-flop can then be reset by means of P1. A master reset is automatically done at switch on by means of C6 and R7.

Alternative Clock:

Sometimes, the Watch crystal can be difficult to locate, or could be considered too expensive. For those willing to avoid the use of a Watch crystal and to accept less time accuracy, an alternative clock generator circuit is provided, directly oscillating at 2Hz, thus avoiding the use of divider ICs. A CMos 7555 Timer IC generates a stable 2Hz square wave, whose frequency must be accurately set by means of two trimmers.

R10 must be adjusted first for coarse tuning, then R11 for fine tuning. Setting precisely the 2Hz frequency of this oscillator is a rather difficult task, and can be done with great patience and the aid of a clock, a chronometer or, best, a digital frequency meter capable of measuring very low frequencies. In any case, after an accurate setup, this oscillator showed a very stable performance, not affected by battery voltage variations and an accuracy of about ±30 seconds per 24 hours interval.

Notes:
  • Wanting the utmost time precision and if a digital frequency meter is available, a 5-50pF 50V Ceramic Trimmer Capacitor can be used in place of C2. It must be adjusted in order to read exactly 32.768kHz on the meter display with the input probe connected to pin #9 of IC1.
  • A Piezo sounder (incorporating a 3KHz oscillator) can be added to provide a visual plus audible alert. It must be wired across pin #11 of IC6D and negative ground, respecting polarities. Remove D1 and R6 if the visual alert is not needed.
Author: RedCircuits - Copyright: www.redcircuits.com
Read More..

Thursday, December 19, 2013

Simple Automatic Water Pump Controller Circuit Diagram

Simple Automatic Water Pump Controller Circuit Diagram is a series of functions to control the Automatic Water Pump Controller Circuit in a reservoir or water storage. As the water level sensor made with a metal plate mounted on the reservoir or water tank, with a sensor in the short to create the top level and a detection sensor for detecting long again made the lower level and ground lines connected to the bottom of reservoirs or reservoir. 

The series of automatic water pump controller is designed with 2 inputs NOR by 4 pieces and relay that is activated by the transistor. Automatic water pump circuit requires +12 VDC voltage source and can be used to control the water pump is connected to AC power . Here is the complete series of pictures.

Automatic Water Pump Controller Circuit Diagram

Automatic Water Pump Controller Circuit Diagram



working principle series of automatic water pump controller above is. At the time the water level is below both sensors, the output IC1C (pin 10) will be LOW, Kemudin when the water began to touch the lower level sensor, the output IC1C (pin10) remains LOW until the water touches the sensor level above, then the output IC1C (pin 10) going HIGH and active relay through Q1 and turn on the water pump to meguras reservoir. 

At the muli down and water level sensors for water untouched MKA IC1C output (pin 10) remains HIGH until the new water untouched semuasensor IC1C output (pin 10) LOW and water pump died. The series of automatic water pump controller is equipped with SW1 which serves to reverse the logic of drains (the output of IC1C) and the concept of water supplied (output dri IC1D). 

When SW1 is connected to IC1D the water pump will turn on when the water does not touch all the sensors and will die when all the sensors tesentuh water. Automatic water pump controller can be used to fill or drain the water according to which mode is selected via SW1.



List Component Automatic Water Pump Controller
R1 = 15K
R2 = 15K
R3 = 10K
R4 = 1K
D1 = LED
D2 = 1N4148
Q1 = BC337
IC1 = 4001
SW = SPDT Switches
Relay RL1 = 12V

Read More..

Wednesday, December 18, 2013

Video Amplifier

The video amplifier in the diagram is a well-known design. Simple, yet very useful, were it not for the ease with which the transistors can be damaged if the potentiometers (black level and signal amplitude) are in their extreme position. Fortunately, this can be obviated by the addition of two resistors. If in the diagram R3 and R4 were direct connections, as in the original design, and P1 were fully clockwise and P2 fully anticlockwise, such a large base current would flow through T1 that this transistor would give up the ghost.

Video Amplifier Circuit diagram:



Moreover, with the wiper of P2 at earth level, the base current of T2 would be dangerously high. Resistors R3 and R4 are sufficient protection against such mishaps, since they limit the base currents to a level of not more than 5 mA. Shunt capacitor C4 prevents R4 having an adverse effect on the amplification.

Author: L.A.M. Prins - Copyright: Elektor Electronics

Source :  http://www.ecircuitslab.com/2011/06/video-amplifier-circuit-diagram.html
Read More..

Tuesday, December 17, 2013

Car Bulb Power Flasher

Derived from the Two-wire Lamp Flasher design, hosted on RED Free Circuit Designs since 1999, this astonishingly simple circuit allows one or two powerful 12V 21W car bulbs to be driven in flashing mode by means of a power MosFet. 
 
Devices of this kind are particularly suited for road, traffic and yard alerts and in all cases where mains supply is not available but a powerful flashing light is yet necessary.

Circuit Diagram:

Power Flash Circuit  Diagram
Car Bulb Power Flasher  Circuit Diagram

Parts Description
R1 6.8K
R2 220K
R3 22K
C1 100uF-25V
C2 10u-25V
D1 1N4002
Q1 BC557
Q2 IRF530
LP1 12V-21W Car Filament Bulb (See Notes)
SW1 SPST Switch (3 Amp minimum)
Notes:
  • Flashing frequency can be varied within a limited range by changing C1 value.
  • As high dc currents are involved, please use suitably sized cables for battery and bulb(s) connections.
Source :  http://www.ecircuitslab.com/2011/06/car-bulb-power-flasher.html
Read More..