Pages

Thursday, October 10, 2013

2004 Chevrolet Corvette Coupe 350 Wiring Diagram

2004 Chevrolet Corvette Coupe 350  Wiring Diagram


The Part of 2004 Chevrolet Corvette Coupe 350  Wiring Diagram:power distribution, fuse block, turn
signal, switch signal, ctrl module, panel cluster, power distribution schematic, multifunction turn signal lever, underhood fuse block, cruise control switch, powertrain control module, serial data, sedel data secondary, throttle actuator control module, instrument panel cluster, powertrain control module.

Read More..

Wednesday, October 9, 2013

Thrifty Voltage Regulator

One of the drawbacks of a three-pin voltage regulator is that the input voltage needs to be 2.5–3 V higher than the output voltage. This makes these integrated regulators unsuitable for battery power supplies. If, for instance, the output voltage is 5 V, a 9 V battery could be discharged to 7.5 V or thereabouts only. On top of this, most of these regulators draw a current of about 2 mA. Special low-drop versions sometimes offer a solution, but they are not ideal either. The regulator described here is rather thriftier: it draws a current of only 300 µA and the difference between its input and output is only 100–200 mV In the circuit diagram, T1 is arranged as a series regulator, which means that the difference between input voltage and output voltage is limited to the transistor’s saturation potential.

Thrifty Voltage Regulator Circuit DiagramTherefore, a 9 V battery can be discharged to about 5 V, which is quite an improvement on the situation with an integrated regulator. Diodes D1-D2-D3, or a suitable zener diode (D4), in conjunction with R5 and P1, form a variable reference voltage source, which is used as the (output-dependent) base potential of T3. If the output voltage drops below a desired level, the base potential of T3 also drops. The transistor then conducts less hard and its collector voltage rises. The base voltage of T2 also rises, so that T1 is driven harder. This results in the near-instantaneous restoration of the output voltage.

The design of the reference voltage source is clearly of paramount importance. The current through the LEDs or the zener diode is of the order of only 100 µA. This means that thedrop across a 5.1 V zener diode is only 4.3 V and across each LED, only about 1.43 V. For a wanted output voltage of 4.8 V, the three LEDs proved very effective, whereas the zener did not. It may well be necessary, if a zener diode is used, to try one rated at 4.7 V. If, however, an output voltage of 5 V is wanted, it will be necessary to carefully select a zener diode. When the battery voltage has dropped to a level where it is only marginally higher than the wanted output voltage, T1 and T2 conduct hard.

A further drop in the battery voltage will cause the collector potential of T2 to drop rapidly to 0 V, since T2 tries to make T1 conduct hard. The large drop in the collector potential of T2 may be used to drive a BATT-LOW indicator. This may be done in three ways as shown in Figure 2. When network a is connected between terminals A and B, transistor T4 will normally be held cut off by divider R6-R7a. If then the voltage at B drops suddenly, T4 conducts, where-upon D5 indicates that the battery is nearly flat. The network in b is similar to that in a, but is intended for a liquid-crystal display of BATT-LOW.

Thrifty Voltage Regulator Circuit DiagramThe collector of T4 is linked to the IC that drives the decimal point and the BAT-LOW segment of the display. Network c may be used if there is an unused inverter or gate in the circuit to be powered. The high value of resistor R7b prevents the internal protection diodes of the IC being damaged. When the regulator has been built, connect it to a variable power supply via a multimeter set to the mA range and set P1 roughly at its mid-position. Turn P1 slowly until the desired output voltage is obtained.

If with an output voltage of 4.8 V the regulator draws a current of more than 250–300 µA, the three LEDs or zener diode must be replaced. The regulator can provide a current of up to about 25 mA. With a fresh 9 V battery, the dissipation of T1 does not exceed 100 mW. If the input voltage is higher, it may be necessary to mount the transistor on a suitable heat sink or replace it by a power transistor, for instance, a Type BD138.
Read More..

Tuesday, October 8, 2013

Dual 20 Watt Audio Power Amplifier

Overture Audio Power Amplifier Series Dual 20-Watt Audio Power Amplifier with Mute and Standby Modes

The LM1876 is a stereo audio amplifier capable of delivering typically 20W per channel of continuous average output power into a 4 or 8 load with less than 0.1% THD+N.

Each amplifier has an independent smooth transition fade-in/out mute and a power conserving standby mode which can be controlled by external logic.

The performance of the LM1876, utilizing its Self Peak Instantaneous Temperature (°Ke) (SPiKe™) protection circuitry, places it in a class above discrete and hybrid amplifiers by providing an inherently, dynamically protected Safe Operating Area (SOA). SPiKe protection means that these parts are safeguarded at the output against overvoltage, undervoltage, overloads, including thermal runaway and instantaneous temperature peaks.

Circuit Diagram

Dual 20-Watt Audio Power Amplifier Dual 20-Watt Audio Power Amplifier Circuit Diagram

Key Specification
THD+N at 1kHz at 2 x 15W continuous average
output power into 4 or 8: 0.1% (max)
THD+N at 1kHz at continuous average
output power of 2 x 20W into 8: 0.009% (typ)
Standby current: 4.2mA (typ)

Applications

  • High-end stereo TVs
  • Component stereo
  • Compact stereo

    Features

  • SPiKe protection
  • Minimal amount of external components necessary
  • Quiet fade-in/out mute mode
  • Standby-mode
  • Isolated 15-lead TO-220 package
  • Non-Isolated 15-lead TO-220 package
  • Wide supply range 20V - 64V

  • Read More..

    Monday, October 7, 2013

    VGA to BNC Adapter Converter

    There are monitors which only have three BNC inputs and which use composite synchronization (‘sync on green’). This circuit has been designed with these types of monitor in mind. As can be seen, the circuit has been kept very simple, but it still gives a reasonable performance. The principle of operation is very straightforward. The RGB signals from the VGA connector are fed to three BNC connectors via AC-coupling capacitors. These have been added to stop any direct current from entering the VGA card. A pull-up resistor on the green output provides a DC offset, while a transistor (a BS170 MOSFET) can switch this output to ground. It is possible to get synchronisation problems when the display is extremely bright, with a maximum green component.

    In this case the value of R2 should be reduced a little, but this has the side effect that the brightness noticeably decreases and the load on the graphics card increases. To keep the colour balance the same, the resistors for the other two colors (R1 en R3) have to be changed to the same value as R2. An EXOR gate from IC1 (74HC86) combines the separate V-sync and H-sync signals into a composite sync signal. Since the sync in DOS-modes is often inverted compared to the modes commonly used by Windows, the output of IC1a is inverted by IC1b. JP1 can then by used to select the correct operating mode. This jumper can be replaced by a small two-way switch, if required.


    This switch should be mounted directly onto the PCB, as any connecting wires will cause a lot of interference. The PCB has been kept as compact as possible, so the circuit can be mounted in a small metal (earthed!) enclosure. With a monitor connected the current consumption will be in the region of 30 mA. A 78L05 voltage regulator provides a stable 5 V, making it possible to use any type of mains adapter, as long as it supplies at least 9 V. Diode D2 provides protection against a reverse polarity. LED D1 indicates when the supply is present. The circuit should be powered up before connecting it to an active VGA output, as otherwise the sync signals will feed the circuit via the internal protection diodes of IC1, which can be noticed by a dimly lit LED. This is something best avoided.

    Resistors:
    R1,R2,R3 = 470Ω
    R4 = 100Ω
    R5 = 3kΩ3
    Capacitors:
    C1,C3,C5 = 47µF 25V radial
    C2,C4,C6,C7,C10 = 100nF ceramic
    C8 = 4µF7 63V radial
    C9 = 100µF 25V radial
    Semiconductors:
    D1 = LED, high-efficiency
    D2 = 1N4002
    T1 = BS170
    IC1 = 74HC86
    IC2 = 78L05
    Miscellaneous:
    JP1 = 3-way pinheader with jumper
    K1 = 15-way VGA socket (female), PCB mount (angled pins)
    K2,K3,K4 = BNC socket (female), PCB mount, 75Ω
    Read More..

    Sunday, October 6, 2013

    Mini Audio Signal Generator

    A small audio test generator is very useful for quickly tracing a signal through an audio unit. Its main purpose is speed rather than refinement. A single sine-wave signal of about 1 kHz is normally all that is needed: distortion is not terribly important. It is, however, important that the unit does not draw too high a current. The generator described meets these modest requirements. It uses standard components, produces a signal of 899Hz at an output level of 1V r.m.s. and draws a current of only 20µA. In theory, the low current drain would give a 9 V battery a life of 25,000 hours. The circuit is a traditional Wien bridge oscillator based on a Type TLC271 op amp. The frequency determining bridge is formed by C1, C2 and R1–R4. The two inputs of the op amp are held at half the supply voltage by dividers R3-R4 and R5-R6 respectively.

    Mini Audio Signal Generator Circuit DiagramResistors R5 and R6 also form part of the feedback loop. The amplification is set to about ´3 with P1. Diodes D1 and D2 are peak limiters. Since the limiting is based on the non-linearity of the diodes, there is a certain amount of distortion. At the nominal output voltage of 1 V r.m.s., the distortion is about 10%. This is, however, of no consequence in fast tests. Nevertheless, if 10% is considered too high, it may be improved appreciably by linking pin 8 of IC1 to ground. This increases the current drain of the circuit to 640 µA, but the distortion is down to 0.7%, provided the circuit is adjusted properly. If a distortion meter or similar is not available, simply adjust the output to 1 V r.m.s. Since the distortion of the unit is not measured in hundredths of a per cent, C1 and C2 may be ceramic types without much detriment.
    Read More..

    Saturday, October 5, 2013

    LOW NOISE WHITE LED DRIVER SYSTEM ELECTRONIC DIAGRAM


    LOW NOISE WHITE LED DRIVER SYSTEM ELECTRONIC DIAGRAM

    The LM3570 evaluation board has a chip enable pin (active high logic) as well as a PWM (active high logic) pin which allows current sources to be turned on and off without completely disabling the part..The LM3570 is capable of supplying up to 80mA of current split between the regulated current sources and VOUT. The LM3570 comes in National’s LLP-14 package.
    Read More..

    Friday, October 4, 2013

    YAMAHA R5C 350 ELECTRONIC DIAGRAM

    YAMAHA R5C 350 ELECTRONIC DIAGRAM

    It shows the connection between the parts such as the front flasher light, rear flasher light, flasher relay, battery, fuse, tail light, stop light, rear flasher light, rear stop switch, neutral switch, front stop switch, AC generator, coil, rectifier, regulator, horn, head light, tachometer, speedometer, high beam indicator light, rear flasher, front flasher, and many more.
    Read More..

    Thursday, October 3, 2013

    Cat And Dog Repellent

    The electronic dog repellent circuit diagram below is a high output ultrasonic transmitter which is primarily intended to act as a dog and cat repeller, which can be used individuals to act as a deterrent against some animals. It should NOT be relied upon as a defence against aggressive dogs but it may help distract them or encourage them to go away and do not consider this as an electronic pest repeller. The ultrasonic dog repellant uses a standard 555 timer IC1 set up as an oscillator using a single RC network to give a 40 kHz square wave with equal mark/space ratio.

    This frequency is above the hearing threshold for humans but is known to be irritating frequency for dog and cats. Since the maximum current that a 555 timer can supply is 200mA an amplifier stage was required so a high-power H-bridge network was devised, formed by 4 transistors TR1 to TR4. A second timer IC2 forms a buffer amplifier that feeds one input of the H-bridge driver, with an inverted waveform to that of IC1 output being fed to the opposite input of the H-bridge.

    Circuit diagram:

    Dog- Cat repellent_Circuit_Diagram1 Cat And Dog Repellent Circuit Diagram

    This means that conduction occurs through the complementary pairs of TR1/TR4 and TR2/TR3 on alternate marks and spaces, effectively doubling the voltage across the ultrasonic transducer, LS1. This is optimised to generate a high output at ultrasonic frequencies. This configuration was tested by decreasing the frequency of the oscillator to an audible level and replacing the ultrasonic transducer with a loudspeaker; the results were astounding. If the dog repellent circuit was fed by a bench power supply rather than a battery that restrict the available current, the output reached 110dB with 4A running through the speaker which is plenty loud enough!

    The Dog and Cat repellant was activated using a normal open switch S1 to control the current consumption, but many forms of automatic switching could be used such as pressure sensitive mats, light beams or PIR sensors. Thus it could be utilise as part of a dog or cat deterrent system to help prevent unwanted damage to gardens or flowerbeds, or a battery powered version can be carried for portable use. Consider also using a lead-acid battery if desired, and a single chip version could be built using the 556 dual timer IC to save space and improve battery life.

    Source : www.extremecircuits.net

    Read More..

    Wednesday, October 2, 2013

    On And Off Button

    In this simple circuit we give the chip a little more attention than usual. It is astonishing what can be built with a 555. We are always infatuated with simple circuits using this IC, such as the one shown here. The 555 is used here so that a single push-button can operate a relay. If you press the button once, the relay is energized. When you press it again the relay turns off. In addition, it is possible to define the initial state of the relay when the power supply is switched on. The design is, as previously mentioned, very simple. Using R1 and R2, the threshold and trigger inputs are held at half the power supply voltage.

    On-Off Button circuit schematic

    When the voltage at the threshold pin becomes greater that 2/3 of the power supply voltage, the output will go low. The output goes high when the voltage at the trigger input is less than 1/3 of the power supply voltage. Because C2, via R3, will eventually have the same level as the output, the output will toggle whenever the push-button is pressed. If, for example, the output is low, the level of the trigger input will also become low and the output will go high! C1 defines the initial state of the relay when the power is applied. If the free end of C1 is connected to VCC, then the output is high after power up; the output is low when C1 is connected to ground.
    Read More..

    Tuesday, October 1, 2013

    Sounds From The Old West

    This circuit shows how far integration can be taken: IC1, a Type HT82207 from Holtek does virtually everything. Only a (small) loudspeaker and the necessary selectors need to be added. The standard 18-pin Type HT82207 is an integrated sound generator, producing sounds typical of the Old West. The various sounds are selected by S1–S6 as listed below. In the quiescent state, the circuit draws a current not exceeding 1 µA.
    • S1 – bugle
    • S2 – neighing
    • S3 – sound of hooves
    • S4 – pistol shot
    • S5 – crack of a rifle
    • S6 – cannon fire
    Read More..